从简单的整数到神秘的虚数,这些数的类型你必须搞懂!
数的从简世界:从简单到复杂的奇妙探险
你有没有想过,数是单的到神什么?
从小学开始,我们就被告知有 0, 1, 2, 3这些自然数,整数南充市某某广告经销部之后又认识了 负数和 分数,虚数接着又跳进了 无理数的类型大海,在高中的必须某个时刻还初识了更神秘的 虚数。
数的搞懂世界就像是一个庞大的家族,有各种各样的从简“成员”,它们各自扮演着不同的单的到神角色。那么,整数今天我们就来一次有趣的虚数“数之世界”探险,看看它们是类型如何从简单到复杂,逐步构成数学的必须奇妙世界的。
自然数:数的搞懂南充市某某广告经销部起点
从最简单、最熟悉的从简自然数开始,即我们平时用来数东西的数:0, 1, 2, 3, 4, 5...。
自然数的一个重要特点是,它们永远不会是负数:在自然数家族里,大家都是积极向上的小伙伴。
自然数帮助我们理解最朴素的“计数”,是数学的起点。
整数:有了“冷酷”的负数
然而,生活并不会一直阳光明媚,我们会遇到零下摄氏度或银行账户里显示的“负余额”:信用卡透支或房贷(提到这个话题,笔者心里总是沉甸甸滴~)。
为了描述这种现象,我们引入了 整数。整数不仅包括正数,还包括 负数,以及它们之间的平衡者——0。因此,整数的完整集合是:
ℤ = { …, -3, -2, -1, 0, 1, 2, 3, …}
整数不仅帮助描述正向的世界,也让我们理解“负面”的现象。
有理数:分配的艺术
当我们学会把一个苹果分给两个人时,有理数就应运而生了。
有理数是可以表示为两个整数之比(即分数)的数,形式如下: a/b,其中 a, b ∈ ℤ, b ≠ 0
(我们没法把苹果分给“0”个人,所以分母不能为零,不然数学家真的会抓狂)。
- 除以 0 没有意义:如果分母为 0,无法找到任何数乘以 0 得到非零的结果,这样就会导致数学上的矛盾。
有理数,比如 1/3, 355/106, -2/3,甚至整数本身也是有理数,因为它们总是可以写成 n/1 的形式。
有理数的作用无处不在,但凡涉及“分配”或者“比例”,它们就会闪亮登场。
实数:无理数的加入
有理数家族已经够庞大了,但你以为这就是全部了?不不不,欢迎来到更广阔的实数世界!实数不仅包括有理数,还包括那些无法用分数表示的“神奇数”——无理数。
无理数的名字听起来有点“无理取闹”。要知道,古希腊毕达哥拉斯学派坚信,所有的事物都可以用整数或整数之比来表达:世界应当是整洁、有理且可以度量的。
不过其中一位成员希帕索斯在研究边长为 1 的等腰直角三角形的斜边长度时,发现结果竟然是 √2。他尝试用整数或分数来表达这个结果,可失败了——它无法用两个整数的比来表示,它的小数部分是无限不循环的,比如 √2 = 1.414213562373095...
就这样一直延续下去,还永远找不到重复的规律。
常见的无理数还包括:π(圆周率)、e(自然对数的底数)、φ(黄金分割比)、√3 等。
因此,实数包括了所有的有理数和无理数,形象地说,实数就是数轴上所有的点,从左到右,无穷无尽。
代数数 vs. 超越数:谁更高深?
接下来,会遇到了两个稍微抽象的概念:代数数和超越数。
代数数是那些能够成为某个整数系数多项式方程解的数。比如,3x² - 9x + 6 = 0 的解是 x = 1 和 x = 2,因此它们两个是代数数。
代数数不仅包括有理数,还包括一些无理数。比如,√2 就是方程 x² - 2 = 0 的解,φ 是方程 x² - x - 1 = 0 的解,所以它们也都是代数数的一员。
但并不是所有的数都能被整数系数多项式方程“驯服”。有些数,无论你如何组合整数系数的多项式,它们都不会成为解。这些数被称为超越数。
最著名的例子就是 π 和 e。无论你怎么组合整系数的多项式,它们就是不愿意成为方程的解。
复数:虚数和实数的完美结合
你以为故事就到这里结束了?不,欢迎来到 复数的世界。复数是由一个实数部分和一个虚数部分组成的,形式为 a + b,其中 是虚数单位,也是方程 x² + 1 = 0 的解—— 也是一个代数数。
虚数听起来有点像魔法,但它们非常实用,特别是在物理学、电力学和工程中有广泛的应用。通过复数,人们可以处理那些仅用实数无法解决的问题。
数的世界远不止于此
数的世界远不止这些,还有许多更高级的数系等待探索。
比如,四元数和 八元数扩展了复数,帮助人们处理三维和更高维的旋转问题;p 进数则在数论中扮演着重要角色,它通过质数的视角重新定义了“距离”,并为数论中的整除性和同余问题提供了强有力的工具。还有 超复数,如 双曲数和 双数,它们在物理和工程中有着特殊的应用,尤其是在处理时空几何和自动微分问题时。如果你认为无穷小只是微积分中的抽象概念,那么 超实数将颠覆你的想法,它们让无穷小和无穷大的操作变得严格且可行。
每一种数系都是理解世界的钥匙。而你我,正站在这条通向无限的道路上,保持好奇心,勇敢追寻!
(责任编辑:探索)
-
这个月,35岁的演员史元庭上了热搜,并不是因为演戏,而是因为他自称没戏拍,兼职做泰山陪爬。他在发布的视频中自嘲,这几年拍戏太难了,无奈只得靠兼职养活自己。史元庭视频截图史元庭毕业于中央戏剧学院,主演的 ...[详细]
-
中新真探:长了骨刺,有办法彻底消除吗?2024-05-25 23:12:22 来源:中国新闻网 作者:周驰 ...[详细]
-
进入到5月底,各大车企一季度销量情况悉数出炉。与新势力的互联网式发榜不同,传统车企的销量榜单往往会显得滞后,甚至要等到乘联会或者是中汽协发布月度数据。虽然比起新势力来速度较慢,但在目前的汽车市场环境下 ...[详细]
-
对于学生来说,学习不仅是为了升学考试,学习知识,增长见识也是学习的主要目的之一,而提高分数最有效的办法,就是重复。再优秀的神童,只学习一遍也无法掌握全部的知识,除了对知识的复习之外,学生还需要通过大量 ...[详细]
-
五一假期首日全国大部天气晴好 北方多风注意防风防火2025-05-01 09:45:37 来源:中国新闻网 ...[详细]
-
【编者按】在近期播出的影视作品和综艺中,总有那么一些可可爱爱,又令人难忘的艺人。他们有的是新生代演员,有的是初出茅庐的小爱豆,也有的是蛰伏多年的实力绿叶。本栏目希望借此机会,捕捉那些已经在努力发光发亮 ...[详细]
-
本周一是美国法定假日阵亡将士纪念日,连上周末三天,凑成一个小长假,也是好莱坞电影公司极为重视的一个档期,于是便出现了《加菲猫家族》The Garfield Movie)和《疯狂的麦克斯:狂暴女神》Fu ...[详细]
-
深圳公共资源交易中心官网近日发布了深圳市轨道10号线东延深圳段交通详细规划采购项目招标公告。招标文件显示,轨道10号线是深圳市中部发展轴上已运营的重要轨道干线,起于福田中心区的福田口岸站,终至平湖 ...[详细]
-
来源:新华网新华网北京6月17日电夏子麟、祝跃)17日一早,随着收割机的轰鸣声响起,北京市密云区河南寨镇5000亩麦田正式开镰收割。6月17日,北京市密云区河南寨镇5000亩麦田正式开镰收割。北京市密 ...[详细]
-
夏天到了,衣服越来越轻薄,胖肚子似乎再也藏不住了。不少人开始在这个季节减肥,但减肥并非易事。有些人会选择不吃晚餐,有些人会刻意控制每餐热量。那么,吃晚餐和每餐七分饱,到底哪个更健康、更有助于减肥呢?一 ...[详细]